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1 Applications of The Hilman-Grassl Bijection

1.1 MacMahon’s theorem
We showed the following last time:

Theorem 1.1 (Stanley).
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where h; j is the hook length of the square i, j in the Young diagram of .

Definition 1.1. A plane partition of shape A is a tableau which is weakly decreasing
going down or to the right.

Example 1.1. Here is a plane partition of shape (4,4, 3,2).
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Theorem 1.2 (MacMahon, c. 1900).
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Proof. Let A = m'™; this is a square diagram. Then Stanley’s theorem says
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Now
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because this limit stabilizes for each coefficient of the power series.
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MacMahon’s theorem is analogous to the following result.

Theorem 1.3 (Euler, 1738).
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1.2 The hook length formula
We can also prove the hook length formula using Stanley’s theorem.

Theorem 1.4 (Frame-Robinson-Thrall, 1954).
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Example 1.2. Suppose A\ = (m,m). Here is a standard Young tableau of this shape:
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Then the hook lengths of each square look like
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In general,
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the m-th Catalan number.



Proof. Write
RPP(N) = | ] Cu,
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where C'4 is where we pick the numbers in order of sums of indices in the diagram. That
is0 S T1,1 S x1,2 S X211 § x1,3 S x22 S 1,4 S €23 § x3,1 S ey this is a cone in R™. Now
look at the number of A € RPP(\) such that [A| < N. Asymptotically, this is about

> #{AcCr:|A|SN}=#SYT(\) - #{0< 21 < - <zpiz+ - +2, <N}
TEeSYT(N)
~ #SYT(X) - N"vol(A),

where A = {0 <z <20 <---<2zp:2z1+- -+ 2, <1}. The vertices of A are when we

have equalities. So we have
vy = (0,0,...,0)

vl = (O,...,O,l)
vy = (0,...,0,1/2,1/2)
v3 =(0,...,0,1/3,1/3,1/3)

vy = (1/n,...,1/n).
This is a triangular matrix, so the volume (1/n! times the determinant), is 1/n! times the
product of the diagonal entries. That is,

Vol(A) = . L.

So we get
n
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The right hand side of Stanley’s theorem is
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where the sum is over matrices B = (b; ;) such that b;; > 0, b;; < N. This is asymp-
totically N" vol(A’), where A" = {0 <y, ;,> vijhij < 1}. The vertices of A’ are

(0,0,...,0)

(1/h1.1,0,...,0)
(0,1/h1.2,0,...,0)



So we get that
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By Stanley’s theorem, we have
{A€RPP(A) : [A| < N|| = |{B:b;; >0, bij < N}

So the asymptotics have to be the same. Then we get that
n!
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We will prove the hook length formula in different ways, as well.
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